Metamath Proof Explorer


Theorem dffunALTV2

Description: Alternate definition of the function relation predicate, cf. dfdisjALTV2 . (Contributed by Peter Mazsa, 8-Feb-2018)

Ref Expression
Assertion dffunALTV2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) )

Proof

Step Hyp Ref Expression
1 df-funALTV ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) )
2 cnvrefrelcoss2 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
3 2 anbi1i ( ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹 ) ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) )
4 1 3 bitri ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹 ) )