Metamath Proof Explorer


Theorem cnvrefrelcoss2

Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion cnvrefrelcoss2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )

Proof

Step Hyp Ref Expression
1 relcoss Rel ≀ 𝑅
2 dfcnvrefrel2 ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ Rel ≀ 𝑅 ) )
3 1 2 mpbiran2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )
4 cossssid ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) )
5 3 4 bitr4i ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )