Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss | ⊢ Rel ≀ 𝑅 | |
2 | dfcnvrefrel2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ∧ Rel ≀ 𝑅 ) ) | |
3 | 1 2 | mpbiran2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) |
4 | cossssid | ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ ( dom ≀ 𝑅 × ran ≀ 𝑅 ) ) ) | |
5 | 3 4 | bitr4i | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |