Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvrefrelcoss2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss | ||
| 2 | dfcnvrefrel2 | ||
| 3 | 1 2 | mpbiran2 | |
| 4 | cossssid | ||
| 5 | 3 4 | bitr4i |