Metamath Proof Explorer


Theorem cnvrefrelcoss2

Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion cnvrefrelcoss2
|- ( CnvRefRel ,~ R <-> ,~ R C_ _I )

Proof

Step Hyp Ref Expression
1 relcoss
 |-  Rel ,~ R
2 dfcnvrefrel2
 |-  ( CnvRefRel ,~ R <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ Rel ,~ R ) )
3 1 2 mpbiran2
 |-  ( CnvRefRel ,~ R <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )
4 cossssid
 |-  ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) )
5 3 4 bitr4i
 |-  ( CnvRefRel ,~ R <-> ,~ R C_ _I )