Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvrefrelcoss2 | |- ( CnvRefRel ,~ R <-> ,~ R C_ _I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss | |- Rel ,~ R |
|
2 | dfcnvrefrel2 | |- ( CnvRefRel ,~ R <-> ( ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) /\ Rel ,~ R ) ) |
|
3 | 1 2 | mpbiran2 | |- ( CnvRefRel ,~ R <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
4 | cossssid | |- ( ,~ R C_ _I <-> ,~ R C_ ( _I i^i ( dom ,~ R X. ran ,~ R ) ) ) |
|
5 | 3 4 | bitr4i | |- ( CnvRefRel ,~ R <-> ,~ R C_ _I ) |