Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnvrefrel |
|- ( CnvRefRel R <-> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
2 |
|
dfrel6 |
|- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
3 |
2
|
biimpi |
|- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
4 |
3
|
sseq1d |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) <-> R C_ ( _I i^i ( dom R X. ran R ) ) ) ) |
5 |
4
|
pm5.32ri |
|- ( ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
6 |
1 5
|
bitri |
|- ( CnvRefRel R <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |