Metamath Proof Explorer


Theorem dfcnvrefrel2

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019)

Ref Expression
Assertion dfcnvrefrel2 ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-cnvrefrel ( CnvRefRel 𝑅 ↔ ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )
2 dfrel6 ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )
3 2 biimpi ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )
4 3 sseq1d ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ) )
5 4 pm5.32ri ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )
6 1 5 bitri ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )