Metamath Proof Explorer


Theorem dfdisjALTV2

Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 . (Contributed by Peter Mazsa, 27-Jul-2021)

Ref Expression
Assertion dfdisjALTV2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-disjALTV ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅 ) )
2 cnvrefrelcoss2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )
3 2 anbi1i ( ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅 ) ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) )
4 1 3 bitri ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) )