Metamath Proof Explorer


Definition df-disjALTV

Description: Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV , see the comment of df-disjs why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set, see eldisjsdisj . Alternate definitions are dfdisjALTV , ... , dfdisjALTV5 . (Contributed by Peter Mazsa, 17-Jul-2021)

Ref Expression
Assertion df-disjALTV ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 wdisjALTV Disj 𝑅
2 0 ccnv 𝑅
3 2 ccoss 𝑅
4 3 wcnvrefrel CnvRefRel ≀ 𝑅
5 0 wrel Rel 𝑅
6 4 5 wa ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅 )
7 1 6 wb ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅 ) )