Metamath Proof Explorer


Definition df-eldisjs

Description: Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set, see eleldisjseldisj . (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion df-eldisjs ElDisjs = { 𝑎 ∣ ( E ↾ 𝑎 ) ∈ Disjs }

Detailed syntax breakdown

Step Hyp Ref Expression
0 celdisjs ElDisjs
1 va 𝑎
2 cep E
3 2 ccnv E
4 1 cv 𝑎
5 3 4 cres ( E ↾ 𝑎 )
6 cdisjs Disjs
7 5 6 wcel ( E ↾ 𝑎 ) ∈ Disjs
8 7 1 cab { 𝑎 ∣ ( E ↾ 𝑎 ) ∈ Disjs }
9 0 8 wceq ElDisjs = { 𝑎 ∣ ( E ↾ 𝑎 ) ∈ Disjs }