Metamath Proof Explorer


Definition df-eldisjs

Description: Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set, see eleldisjseldisj . (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion df-eldisjs ElDisjs=a|E-1aDisjs

Detailed syntax breakdown

Step Hyp Ref Expression
0 celdisjs classElDisjs
1 va setvara
2 cep classE
3 2 ccnv classE-1
4 1 cv setvara
5 3 4 cres classE-1a
6 cdisjs classDisjs
7 5 6 wcel wffE-1aDisjs
8 7 1 cab classa|E-1aDisjs
9 0 8 wceq wffElDisjs=a|E-1aDisjs