Metamath Proof Explorer


Definition df-eldisjs

Description: Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set, see eleldisjseldisj . (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion df-eldisjs ElDisjs = a | E -1 a Disjs

Detailed syntax breakdown

Step Hyp Ref Expression
0 celdisjs class ElDisjs
1 va setvar a
2 cep class E
3 2 ccnv class E -1
4 1 cv setvar a
5 3 4 cres class E -1 a
6 cdisjs class Disjs
7 5 6 wcel wff E -1 a Disjs
8 7 1 cab class a | E -1 a Disjs
9 0 8 wceq wff ElDisjs = a | E -1 a Disjs