Metamath Proof Explorer


Definition df-disjALTV

Description: Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV , see the comment of df-disjs why we need disjoint relations instead of converse functions anyway.

The element of the class of disjoints and the disjoint predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set, see eldisjsdisj . Alternate definitions are dfdisjALTV , ... , dfdisjALTV5 . (Contributed by Peter Mazsa, 17-Jul-2021)

Ref Expression
Assertion df-disjALTV
|- ( Disj R <-> ( CnvRefRel ,~ `' R /\ Rel R ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 0 wdisjALTV
 |-  Disj R
2 0 ccnv
 |-  `' R
3 2 ccoss
 |-  ,~ `' R
4 3 wcnvrefrel
 |-  CnvRefRel ,~ `' R
5 0 wrel
 |-  Rel R
6 4 5 wa
 |-  ( CnvRefRel ,~ `' R /\ Rel R )
7 1 6 wb
 |-  ( Disj R <-> ( CnvRefRel ,~ `' R /\ Rel R ) )