Metamath Proof Explorer


Theorem dfdisjALTV5

Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV5 . (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfdisjALTV5
|- ( Disj R <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 dfdisjALTV2
 |-  ( Disj R <-> ( ,~ `' R C_ _I /\ Rel R ) )
2 cosscnvssid5
 |-  ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) )
3 1 2 bitri
 |-  ( Disj R <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) )