Metamath Proof Explorer


Theorem cosscnvssid5

Description: Equivalent expressions for the class of cosets by the converse of the relation R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cosscnvssid5
|- ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 cosscnvssid4
 |-  ( ,~ `' R C_ _I <-> A. x E* u u R x )
2 1 anbi1i
 |-  ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) )
3 inecmo3
 |-  ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) )
4 2 3 bitr4i
 |-  ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) )