Description: Equivalent expressions for the class of cosets by the converse of the relation R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosscnvssid5 | |- ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosscnvssid4 | |- ( ,~ `' R C_ _I <-> A. x E* u u R x ) |
|
2 | 1 | anbi1i | |- ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) ) |
3 | inecmo3 | |- ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) ) |
|
4 | 2 3 | bitr4i | |- ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) ) |