Metamath Proof Explorer


Theorem cosscnvssid4

Description: Equivalent expressions for the class of cosets by the converse of R to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021)

Ref Expression
Assertion cosscnvssid4
|- ( ,~ `' R C_ _I <-> A. x E* u u R x )

Proof

Step Hyp Ref Expression
1 cossssid4
 |-  ( ,~ `' R C_ _I <-> A. x E* u x `' R u )
2 brcnvg
 |-  ( ( x e. _V /\ u e. _V ) -> ( x `' R u <-> u R x ) )
3 2 el2v
 |-  ( x `' R u <-> u R x )
4 3 mobii
 |-  ( E* u x `' R u <-> E* u u R x )
5 4 albii
 |-  ( A. x E* u x `' R u <-> A. x E* u u R x )
6 1 5 bitri
 |-  ( ,~ `' R C_ _I <-> A. x E* u u R x )