Metamath Proof Explorer


Theorem inecmo3

Description: Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion inecmo3
|- ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 inecmo2
 |-  ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u e. dom R u R x /\ Rel R ) )
2 alrmomodm
 |-  ( Rel R -> ( A. x E* u e. dom R u R x <-> A. x E* u u R x ) )
3 2 pm5.32ri
 |-  ( ( A. x E* u e. dom R u R x /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) )
4 1 3 bitri
 |-  ( ( A. u e. dom R A. v e. dom R ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ Rel R ) <-> ( A. x E* u u R x /\ Rel R ) )