Step |
Hyp |
Ref |
Expression |
1 |
|
df-rmo |
|- ( E* u e. dom R u R x <-> E* u ( u e. dom R /\ u R x ) ) |
2 |
|
brres |
|- ( x e. _V -> ( u ( R |` dom R ) x <-> ( u e. dom R /\ u R x ) ) ) |
3 |
2
|
elv |
|- ( u ( R |` dom R ) x <-> ( u e. dom R /\ u R x ) ) |
4 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
5 |
4
|
breqd |
|- ( Rel R -> ( u ( R |` dom R ) x <-> u R x ) ) |
6 |
3 5
|
bitr3id |
|- ( Rel R -> ( ( u e. dom R /\ u R x ) <-> u R x ) ) |
7 |
6
|
mobidv |
|- ( Rel R -> ( E* u ( u e. dom R /\ u R x ) <-> E* u u R x ) ) |
8 |
1 7
|
syl5bb |
|- ( Rel R -> ( E* u e. dom R u R x <-> E* u u R x ) ) |
9 |
8
|
albidv |
|- ( Rel R -> ( A. x E* u e. dom R u R x <-> A. x E* u u R x ) ) |