Metamath Proof Explorer


Theorem inecmo3

Description: Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion inecmo3 ( ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 inecmo2 ( ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )
2 alrmomodm ( Rel 𝑅 → ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ) )
3 2 pm5.32ri ( ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )
4 1 3 bitri ( ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )