Description: Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | inecmo3 | ⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inecmo2 | ⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) | |
2 | alrmomodm | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ) ) | |
3 | 2 | pm5.32ri | ⊢ ( ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
4 | 1 3 | bitri | ⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |