Metamath Proof Explorer


Theorem moeu2

Description: Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024)

Ref Expression
Assertion moeu2
|- ( E* x ph <-> ( -. E. x ph \/ E! x ph ) )

Proof

Step Hyp Ref Expression
1 moeu
 |-  ( E* x ph <-> ( E. x ph -> E! x ph ) )
2 imor
 |-  ( ( E. x ph -> E! x ph ) <-> ( -. E. x ph \/ E! x ph ) )
3 1 2 bitri
 |-  ( E* x ph <-> ( -. E. x ph \/ E! x ph ) )