| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exancom |
|- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
| 2 |
|
moeu2 |
|- ( E* x ps <-> ( -. E. x ps \/ E! x ps ) ) |
| 3 |
|
19.8a |
|- ( ps -> E. x ps ) |
| 4 |
3
|
con3i |
|- ( -. E. x ps -> -. ps ) |
| 5 |
|
pm2.21 |
|- ( -. ps -> ( ps -> ph ) ) |
| 6 |
4 5
|
syl |
|- ( -. E. x ps -> ( ps -> ph ) ) |
| 7 |
6
|
a1d |
|- ( -. E. x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 8 |
|
eupickbi |
|- ( E! x ps -> ( E. x ( ps /\ ph ) <-> A. x ( ps -> ph ) ) ) |
| 9 |
|
sp |
|- ( A. x ( ps -> ph ) -> ( ps -> ph ) ) |
| 10 |
8 9
|
biimtrdi |
|- ( E! x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 11 |
7 10
|
jaoi |
|- ( ( -. E. x ps \/ E! x ps ) -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 12 |
2 11
|
sylbi |
|- ( E* x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
| 13 |
1 12
|
biimtrid |
|- ( E* x ps -> ( E. x ( ph /\ ps ) -> ( ps -> ph ) ) ) |
| 14 |
13
|
imp |
|- ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |