Metamath Proof Explorer


Theorem cosscnvssid5

Description: Equivalent expressions for the class of cosets by the converse of the relation R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cosscnvssid5 R -1 I Rel R u dom R v dom R u = v u R v R = Rel R

Proof

Step Hyp Ref Expression
1 cosscnvssid4 R -1 I x * u u R x
2 1 anbi1i R -1 I Rel R x * u u R x Rel R
3 inecmo3 u dom R v dom R u = v u R v R = Rel R x * u u R x Rel R
4 2 3 bitr4i R -1 I Rel R u dom R v dom R u = v u R v R = Rel R