Description: Equivalent expressions for the class of cosets by the converse of the relation R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cosscnvssid5 | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosscnvssid4 | ⊢ ( ≀ ◡ 𝑅 ⊆ I ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ) | |
2 | 1 | anbi1i | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) |
3 | inecmo3 | ⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) ) | |
4 | 2 3 | bitr4i | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |