Metamath Proof Explorer


Theorem cosscnvssid5

Description: Equivalent expressions for the class of cosets by the converse of the relation R to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion cosscnvssid5 ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 cosscnvssid4 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 )
2 1 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )
3 inecmo3 ( ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ∧ Rel 𝑅 ) )
4 2 3 bitr4i ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) )