Step |
Hyp |
Ref |
Expression |
1 |
|
dfcoss2 |
⊢ ≀ ∅ = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) } |
2 |
|
ec0 |
⊢ [ 𝑥 ] ∅ = ∅ |
3 |
2
|
eleq2i |
⊢ ( 𝑦 ∈ [ 𝑥 ] ∅ ↔ 𝑦 ∈ ∅ ) |
4 |
2
|
eleq2i |
⊢ ( 𝑧 ∈ [ 𝑥 ] ∅ ↔ 𝑧 ∈ ∅ ) |
5 |
3 4
|
anbi12i |
⊢ ( ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ∃ 𝑥 ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
7 |
|
19.9v |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
8 |
6 7
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) ↔ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ) |
9 |
8
|
opabbii |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑥 ( 𝑦 ∈ [ 𝑥 ] ∅ ∧ 𝑧 ∈ [ 𝑥 ] ∅ ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) } |
10 |
|
prnzg |
⊢ ( 𝑦 ∈ V → { 𝑦 , 𝑧 } ≠ ∅ ) |
11 |
10
|
elv |
⊢ { 𝑦 , 𝑧 } ≠ ∅ |
12 |
|
ss0b |
⊢ ( { 𝑦 , 𝑧 } ⊆ ∅ ↔ { 𝑦 , 𝑧 } = ∅ ) |
13 |
11 12
|
nemtbir |
⊢ ¬ { 𝑦 , 𝑧 } ⊆ ∅ |
14 |
|
prssg |
⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ { 𝑦 , 𝑧 } ⊆ ∅ ) ) |
15 |
14
|
el2v |
⊢ ( ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ↔ { 𝑦 , 𝑧 } ⊆ ∅ ) |
16 |
13 15
|
mtbir |
⊢ ¬ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) |
17 |
16
|
opabf |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) } = ∅ |
18 |
1 9 17
|
3eqtri |
⊢ ≀ ∅ = ∅ |