Description: Define the disjoint relation predicate, i.e., the disjoint predicate. A disjoint relation is a converse function of the relation by dfdisjALTV , see the comment of df-disjs why we need disjoint relations instead of converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set, see eldisjsdisj . Alternate definitions are dfdisjALTV , ... , dfdisjALTV5 . (Contributed by Peter Mazsa, 17-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | df-disjALTV |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cR | ||
1 | 0 | wdisjALTV | |
2 | 0 | ccnv | |
3 | 2 | ccoss | |
4 | 3 | wcnvrefrel | |
5 | 0 | wrel | |
6 | 4 5 | wa | |
7 | 1 6 | wb |