Metamath Proof Explorer


Theorem eldisjsdisj

Description: The element of the class of disjoint relations and the disjoint relation predicate are the same, that is ( R e. Disjs <-> Disj R ) when R is a set. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion eldisjsdisj R V R Disjs Disj R

Proof

Step Hyp Ref Expression
1 cosscnvex R V R -1 V
2 elcnvrefrelsrel R -1 V R -1 CnvRefRels CnvRefRel R -1
3 1 2 syl R V R -1 CnvRefRels CnvRefRel R -1
4 elrelsrel R V R Rels Rel R
5 3 4 anbi12d R V R -1 CnvRefRels R Rels CnvRefRel R -1 Rel R
6 eldisjs R Disjs R -1 CnvRefRels R Rels
7 df-disjALTV Disj R CnvRefRel R -1 Rel R
8 5 6 7 3bitr4g R V R Disjs Disj R