Description: Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdisjALTV | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡ 𝑅 ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV | ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡ 𝑅 ∧ Rel 𝑅 ) ) | |
2 | relcnv | ⊢ Rel ◡ 𝑅 | |
3 | df-funALTV | ⊢ ( FunALTV ◡ 𝑅 ↔ ( CnvRefRel ≀ ◡ 𝑅 ∧ Rel ◡ 𝑅 ) ) | |
4 | 2 3 | mpbiran2 | ⊢ ( FunALTV ◡ 𝑅 ↔ CnvRefRel ≀ ◡ 𝑅 ) |
5 | 4 | anbi1i | ⊢ ( ( FunALTV ◡ 𝑅 ∧ Rel 𝑅 ) ↔ ( CnvRefRel ≀ ◡ 𝑅 ∧ Rel 𝑅 ) ) |
6 | 1 5 | bitr4i | ⊢ ( Disj 𝑅 ↔ ( FunALTV ◡ 𝑅 ∧ Rel 𝑅 ) ) |