Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV3 . (Contributed by Peter Mazsa, 28-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdisjALTV3 | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ) | |
2 | cosscnvssid3 | ⊢ ( ≀ ◡ 𝑅 ⊆ I ↔ ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) ) |
4 | 1 3 | bitri | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑢 ∀ 𝑣 ∀ 𝑥 ( ( 𝑢 𝑅 𝑥 ∧ 𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) ) |