Metamath Proof Explorer


Theorem dfdisjALTV3

Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV3 . (Contributed by Peter Mazsa, 28-Jul-2021)

Ref Expression
Assertion dfdisjALTV3 ( Disj 𝑅 ↔ ( ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑅 𝑥𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dfdisjALTV2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) )
2 cosscnvssid3 ( ≀ 𝑅 ⊆ I ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑅 𝑥𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) )
3 2 anbi1i ( ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑅 𝑥𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) )
4 1 3 bitri ( Disj 𝑅 ↔ ( ∀ 𝑢𝑣𝑥 ( ( 𝑢 𝑅 𝑥𝑣 𝑅 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel 𝑅 ) )