Metamath Proof Explorer


Theorem dfdisjALTV3

Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV3 . (Contributed by Peter Mazsa, 28-Jul-2021)

Ref Expression
Assertion dfdisjALTV3
|- ( Disj R <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 dfdisjALTV2
 |-  ( Disj R <-> ( ,~ `' R C_ _I /\ Rel R ) )
2 cosscnvssid3
 |-  ( ,~ `' R C_ _I <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) )
3 2 anbi1i
 |-  ( ( ,~ `' R C_ _I /\ Rel R ) <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ Rel R ) )
4 1 3 bitri
 |-  ( Disj R <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ Rel R ) )