Description: Alternate definition of the function relation predicate, cf. dfdisjALTV3 . Reproduction of dffun2 . For the X axis and the Y axis you can convert the right side to ( A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) /\ Rel F ) . (Contributed by NM, 29-Dec-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | dffunALTV3 | |- ( FunALTV F <-> ( A. u A. x A. y ( ( u F x /\ u F y ) -> x = y ) /\ Rel F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunALTV2 | |- ( FunALTV F <-> ( ,~ F C_ _I /\ Rel F ) ) |
|
2 | cossssid3 | |- ( ,~ F C_ _I <-> A. u A. x A. y ( ( u F x /\ u F y ) -> x = y ) ) |
|
3 | 2 | anbi1i | |- ( ( ,~ F C_ _I /\ Rel F ) <-> ( A. u A. x A. y ( ( u F x /\ u F y ) -> x = y ) /\ Rel F ) ) |
4 | 1 3 | bitri | |- ( FunALTV F <-> ( A. u A. x A. y ( ( u F x /\ u F y ) -> x = y ) /\ Rel F ) ) |