Metamath Proof Explorer


Theorem dffunALTV3

Description: Alternate definition of the function relation predicate, cf. dfdisjALTV3 . Reproduction of dffun2 . For the X axis and the Y axis you can convert the right side to ( A. x1 A. y1 A. y2 ( ( x1 f y1 /\ x1 f y2 ) -> y1 = y2 ) /\ Rel F ) . (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dffunALTV3 FunALTV F u x y u F x u F y x = y Rel F

Proof

Step Hyp Ref Expression
1 dffunALTV2 FunALTV F F I Rel F
2 cossssid3 F I u x y u F x u F y x = y
3 2 anbi1i F I Rel F u x y u F x u F y x = y Rel F
4 1 3 bitri FunALTV F u x y u F x u F y x = y Rel F