Metamath Proof Explorer


Theorem dffunALTV4

Description: Alternate definition of the function relation predicate, cf. dfdisjALTV4 . This is dffun6 . For the X axis and the Y axis you can convert the right side to ( A. x1 E* y1 x1 F y1 /\ Rel F ) . (Contributed by NM, 9-Mar-1995)

Ref Expression
Assertion dffunALTV4
|- ( FunALTV F <-> ( A. u E* x u F x /\ Rel F ) )

Proof

Step Hyp Ref Expression
1 dffunALTV2
 |-  ( FunALTV F <-> ( ,~ F C_ _I /\ Rel F ) )
2 cossssid4
 |-  ( ,~ F C_ _I <-> A. u E* x u F x )
3 2 anbi1i
 |-  ( ( ,~ F C_ _I /\ Rel F ) <-> ( A. u E* x u F x /\ Rel F ) )
4 1 3 bitri
 |-  ( FunALTV F <-> ( A. u E* x u F x /\ Rel F ) )