Step |
Hyp |
Ref |
Expression |
1 |
|
cossssid3 |
|- ( ,~ `' R C_ _I <-> A. x A. u A. v ( ( x `' R u /\ x `' R v ) -> u = v ) ) |
2 |
|
alrot3 |
|- ( A. x A. u A. v ( ( x `' R u /\ x `' R v ) -> u = v ) <-> A. u A. v A. x ( ( x `' R u /\ x `' R v ) -> u = v ) ) |
3 |
|
brcnvg |
|- ( ( x e. _V /\ u e. _V ) -> ( x `' R u <-> u R x ) ) |
4 |
3
|
el2v |
|- ( x `' R u <-> u R x ) |
5 |
|
brcnvg |
|- ( ( x e. _V /\ v e. _V ) -> ( x `' R v <-> v R x ) ) |
6 |
5
|
el2v |
|- ( x `' R v <-> v R x ) |
7 |
4 6
|
anbi12i |
|- ( ( x `' R u /\ x `' R v ) <-> ( u R x /\ v R x ) ) |
8 |
7
|
imbi1i |
|- ( ( ( x `' R u /\ x `' R v ) -> u = v ) <-> ( ( u R x /\ v R x ) -> u = v ) ) |
9 |
8
|
3albii |
|- ( A. u A. v A. x ( ( x `' R u /\ x `' R v ) -> u = v ) <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) ) |
10 |
1 2 9
|
3bitri |
|- ( ,~ `' R C_ _I <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) ) |