Metamath Proof Explorer


Theorem cosscnvssid3

Description: Equivalent expressions for the class of cosets by the converse of R to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021)

Ref Expression
Assertion cosscnvssid3 R-1IuvxuRxvRxu=v

Proof

Step Hyp Ref Expression
1 cossssid3 R-1IxuvxR-1uxR-1vu=v
2 alrot3 xuvxR-1uxR-1vu=vuvxxR-1uxR-1vu=v
3 brcnvg xVuVxR-1uuRx
4 3 el2v xR-1uuRx
5 brcnvg xVvVxR-1vvRx
6 5 el2v xR-1vvRx
7 4 6 anbi12i xR-1uxR-1vuRxvRx
8 7 imbi1i xR-1uxR-1vu=vuRxvRxu=v
9 8 3albii uvxxR-1uxR-1vu=vuvxuRxvRxu=v
10 1 2 9 3bitri R-1IuvxuRxvRxu=v