Metamath Proof Explorer


Theorem alrot3

Description: Theorem *11.21 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion alrot3 xyzφyzxφ

Proof

Step Hyp Ref Expression
1 alcom xyzφyxzφ
2 alcom xzφzxφ
3 2 albii yxzφyzxφ
4 1 3 bitri xyzφyzxφ