Metamath Proof Explorer


Theorem eqvrelcoss3

Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 28-Apr-2019)

Ref Expression
Assertion eqvrelcoss3 ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )

Proof

Step Hyp Ref Expression
1 relcoss Rel ≀ 𝑅
2 1 biantru ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ) ↔ ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ) ∧ Rel ≀ 𝑅 ) )
3 refrelcosslem 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥
4 symrelcoss3 ( ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ Rel ≀ 𝑅 )
5 4 simpli 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 )
6 3 5 triantru3 ( ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ↔ ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ) )
7 dfeqvrel3 ( EqvRel ≀ 𝑅 ↔ ( ( ∀ 𝑥 ∈ dom ≀ 𝑅 𝑥𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥𝑅 𝑦𝑦𝑅 𝑥 ) ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) ) ∧ Rel ≀ 𝑅 ) )
8 2 6 7 3bitr4ri ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥𝑅 𝑦𝑦𝑅 𝑧 ) → 𝑥𝑅 𝑧 ) )