Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelcoss2 | ⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcoss3 | ⊢ ( EqvRel ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) | |
2 | cocossss | ⊢ ( ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) | |
3 | 1 2 | bitr4i | ⊢ ( EqvRel ≀ 𝑅 ↔ ≀ ≀ 𝑅 ⊆ ≀ 𝑅 ) |