Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelcoss2 | |- ( EqvRel ,~ R <-> ,~ ,~ R C_ ,~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcoss3 | |- ( EqvRel ,~ R <-> A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) ) |
|
2 | cocossss | |- ( ,~ ,~ R C_ ,~ R <-> A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) ) |
|
3 | 1 2 | bitr4i | |- ( EqvRel ,~ R <-> ,~ ,~ R C_ ,~ R ) |