Metamath Proof Explorer


Theorem eqvrelcoss4

Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019) (Revised by Peter Mazsa, 30-Sep-2021)

Ref Expression
Assertion eqvrelcoss4
|- ( EqvRel ,~ R <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) )

Proof

Step Hyp Ref Expression
1 eqvrelcoss3
 |-  ( EqvRel ,~ R <-> A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) )
2 trcoss2
 |-  ( A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) )
3 1 2 bitri
 |-  ( EqvRel ,~ R <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) )