Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 3-May-2019) (Revised by Peter Mazsa, 30-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelcoss4 | |- ( EqvRel ,~ R <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelcoss3 | |- ( EqvRel ,~ R <-> A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) ) |
|
2 | trcoss2 | |- ( A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
|
3 | 1 2 | bitri | |- ( EqvRel ,~ R <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |