Metamath Proof Explorer


Theorem dfcoeleqvrels

Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 , eqvrelcoss3 and eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion dfcoeleqvrels
|- CoElEqvRels = { a | ~ a e. EqvRels }

Proof

Step Hyp Ref Expression
1 df-coeleqvrels
 |-  CoElEqvRels = { a | ,~ ( `' _E |` a ) e. EqvRels }
2 df-coels
 |-  ~ a = ,~ ( `' _E |` a )
3 2 eleq1i
 |-  ( ~ a e. EqvRels <-> ,~ ( `' _E |` a ) e. EqvRels )
4 3 abbii
 |-  { a | ~ a e. EqvRels } = { a | ,~ ( `' _E |` a ) e. EqvRels }
5 1 4 eqtr4i
 |-  CoElEqvRels = { a | ~ a e. EqvRels }