Metamath Proof Explorer


Theorem dfcoeleqvrel

Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 , eqvrelcoss3 and eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion dfcoeleqvrel
|- ( CoElEqvRel A <-> EqvRel ~ A )

Proof

Step Hyp Ref Expression
1 df-coeleqvrel
 |-  ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) )
2 df-coels
 |-  ~ A = ,~ ( `' _E |` A )
3 2 eqvreleqi
 |-  ( EqvRel ~ A <-> EqvRel ,~ ( `' _E |` A ) )
4 1 3 bitr4i
 |-  ( CoElEqvRel A <-> EqvRel ~ A )