Metamath Proof Explorer


Theorem dfcoeleqvrel

Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 , eqvrelcoss3 and eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion dfcoeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 )

Proof

Step Hyp Ref Expression
1 df-coeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
2 df-coels 𝐴 = ≀ ( E ↾ 𝐴 )
3 2 eqvreleqi ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴 ) )
4 1 3 bitr4i ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴 )