Metamath Proof Explorer


Definition df-coeleqvrel

Description: Define the coelement equivalence relation predicate. (Read: the coelement equivalence relation on A .) Alternate definition is dfcoeleqvrel . For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate, see elcoeleqvrelsrel . (Contributed by Peter Mazsa, 11-Dec-2021)

Ref Expression
Assertion df-coeleqvrel
|- ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 wcoeleqvrel
 |-  CoElEqvRel A
2 cep
 |-  _E
3 2 ccnv
 |-  `' _E
4 3 0 cres
 |-  ( `' _E |` A )
5 4 ccoss
 |-  ,~ ( `' _E |` A )
6 5 weqvrel
 |-  EqvRel ,~ ( `' _E |` A )
7 1 6 wb
 |-  ( CoElEqvRel A <-> EqvRel ,~ ( `' _E |` A ) )