Metamath Proof Explorer


Theorem dfcoeleqvrels

Description: Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on eqvrelcoss2 , eqvrelcoss3 and eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 28-Nov-2022)

Ref Expression
Assertion dfcoeleqvrels CoElEqvRels = { 𝑎 ∣ ∼ 𝑎 ∈ EqvRels }

Proof

Step Hyp Ref Expression
1 df-coeleqvrels CoElEqvRels = { 𝑎 ∣ ≀ ( E ↾ 𝑎 ) ∈ EqvRels }
2 df-coels 𝑎 = ≀ ( E ↾ 𝑎 )
3 2 eleq1i ( ∼ 𝑎 ∈ EqvRels ↔ ≀ ( E ↾ 𝑎 ) ∈ EqvRels )
4 3 abbii { 𝑎 ∣ ∼ 𝑎 ∈ EqvRels } = { 𝑎 ∣ ≀ ( E ↾ 𝑎 ) ∈ EqvRels }
5 1 4 eqtr4i CoElEqvRels = { 𝑎 ∣ ∼ 𝑎 ∈ EqvRels }