Metamath Proof Explorer
Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018)
|
|
Ref |
Expression |
|
Hypotheses |
triantru3.1 |
⊢ 𝜑 |
|
|
triantru3.2 |
⊢ 𝜓 |
|
Assertion |
triantru3 |
⊢ ( 𝜒 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
triantru3.1 |
⊢ 𝜑 |
| 2 |
|
triantru3.2 |
⊢ 𝜓 |
| 3 |
1
|
biantrur |
⊢ ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 |
2
|
biantrur |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 5 |
|
3anass |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 6 |
3 4 5
|
3bitr4i |
⊢ ( 𝜒 ↔ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |