Metamath Proof Explorer


Theorem triantru3

Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018)

Ref Expression
Hypotheses triantru3.1 𝜑
triantru3.2 𝜓
Assertion triantru3 ( 𝜒 ↔ ( 𝜑𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 triantru3.1 𝜑
2 triantru3.2 𝜓
3 1 biantrur ( ( 𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
4 2 biantrur ( 𝜒 ↔ ( 𝜓𝜒 ) )
5 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
6 3 4 5 3bitr4i ( 𝜒 ↔ ( 𝜑𝜓𝜒 ) )