Metamath Proof Explorer


Theorem triantru3

Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018)

Ref Expression
Hypotheses triantru3.1
|- ph
triantru3.2
|- ps
Assertion triantru3
|- ( ch <-> ( ph /\ ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 triantru3.1
 |-  ph
2 triantru3.2
 |-  ps
3 1 biantrur
 |-  ( ( ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
4 2 biantrur
 |-  ( ch <-> ( ps /\ ch ) )
5 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
6 3 4 5 3bitr4i
 |-  ( ch <-> ( ph /\ ps /\ ch ) )