Metamath Proof Explorer
Description: A wff is equivalent to its conjunctions with truths. (Contributed by Peter Mazsa, 30-Nov-2018)
|
|
Ref |
Expression |
|
Hypotheses |
triantru3.1 |
|
|
|
triantru3.2 |
|
|
Assertion |
triantru3 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
triantru3.1 |
|
| 2 |
|
triantru3.2 |
|
| 3 |
1
|
biantrur |
|
| 4 |
2
|
biantrur |
|
| 5 |
|
3anass |
|
| 6 |
3 4 5
|
3bitr4i |
|