Metamath Proof Explorer


Theorem eqeltr

Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017)

Ref Expression
Assertion eqeltr ( ( 𝐴 = 𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
2 1 biimpar ( ( 𝐴 = 𝐵𝐵𝐶 ) → 𝐴𝐶 )