| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 = 𝐴 ) |
| 2 |
|
eqeltr |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
| 3 |
1 2
|
jca |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
| 4 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 5 |
4
|
anbi1i |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 6 |
4
|
anbi1i |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 7 |
3 5 6
|
3imtr3i |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 = 𝐵 ) |
| 9 |
|
eqeltr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 10 |
8 9
|
jca |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 11 |
7 10
|
impbii |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |