Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 = 𝐴 ) |
2 |
|
eqeltr |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
3 |
1 2
|
jca |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
4 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
6 |
4
|
anbi1i |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
7 |
3 5 6
|
3imtr3i |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 = 𝐵 ) |
9 |
|
eqeltr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
10 |
8 9
|
jca |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
11 |
7 10
|
impbii |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |