Metamath Proof Explorer


Theorem eqelb

Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 17-Jul-2019)

Ref Expression
Assertion eqelb A = B A C A = B B C

Proof

Step Hyp Ref Expression
1 simpl B = A A C B = A
2 eqeltr B = A A C B C
3 1 2 jca B = A A C B = A B C
4 eqcom B = A A = B
5 4 anbi1i B = A A C A = B A C
6 4 anbi1i B = A B C A = B B C
7 3 5 6 3imtr3i A = B A C A = B B C
8 simpl A = B B C A = B
9 eqeltr A = B B C A C
10 8 9 jca A = B B C A = B A C
11 7 10 impbii A = B A C A = B B C