Metamath Proof Explorer


Theorem eqeltr

Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017)

Ref Expression
Assertion eqeltr A = B B C A C

Proof

Step Hyp Ref Expression
1 eleq1 A = B A C B C
2 1 biimpar A = B B C A C