Metamath Proof Explorer


Theorem eldisjim

Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)

Ref Expression
Assertion eldisjim ElDisjACoElEqvRelA

Proof

Step Hyp Ref Expression
1 disjim DisjE-1AEqvRelE-1A
2 df-eldisj ElDisjADisjE-1A
3 df-coeleqvrel CoElEqvRelAEqvRelE-1A
4 1 2 3 3imtr4i ElDisjACoElEqvRelA